p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.96D4, (C2×D4).21Q8, (C2×D4).197D4, C4⋊2(C4.D4), C23.8(C4⋊C4), (C23×C4).21C4, C24.30(C2×C4), C4.91(C22⋊Q8), C4.116(C4⋊D4), C4⋊M4(2)⋊23C2, C22.C42⋊12C2, C23.186(C22×C4), (C2×C42).245C22, (C22×C4).660C23, C2.9(C23.7Q8), (C22×D4).455C22, C22.26(C42⋊C2), (C2×M4(2)).151C22, C2.23(M4(2).8C22), (C2×C4×D4).14C2, (C2×C4).1(C2×Q8), C22.18(C2×C4⋊C4), (C2×C4).45(C4○D4), (C2×C4).1312(C2×D4), (C2×C22⋊C4).37C4, (C22×C4).50(C2×C4), (C2×C4.D4).6C2, C2.25(C2×C4.D4), (C2×C4⋊C4).753C22, (C2×C4).356(C22⋊C4), C22.245(C2×C22⋊C4), SmallGroup(128,532)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.96D4
G = < a,b,c,d | a4=b4=1, c4=b2, d2=b, ab=ba, cac-1=dad-1=a-1b2, cbc-1=b-1, bd=db, dcd-1=b-1c3 >
Subgroups: 356 in 168 conjugacy classes, 62 normal (20 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C4.D4, C4⋊C8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C2×M4(2), C23×C4, C22×D4, C22.C42, C2×C4.D4, C4⋊M4(2), C2×C4×D4, C42.96D4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C4.D4, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4⋊D4, C22⋊Q8, C23.7Q8, C2×C4.D4, M4(2).8C22, C42.96D4
(1 16 25 19)(2 24 26 13)(3 10 27 21)(4 18 28 15)(5 12 29 23)(6 20 30 9)(7 14 31 17)(8 22 32 11)
(1 31 5 27)(2 28 6 32)(3 25 7 29)(4 30 8 26)(9 22 13 18)(10 19 14 23)(11 24 15 20)(12 21 16 17)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 4 31 30 5 8 27 26)(2 25 28 7 6 29 32 3)(9 19 22 14 13 23 18 10)(11 17 24 12 15 21 20 16)
G:=sub<Sym(32)| (1,16,25,19)(2,24,26,13)(3,10,27,21)(4,18,28,15)(5,12,29,23)(6,20,30,9)(7,14,31,17)(8,22,32,11), (1,31,5,27)(2,28,6,32)(3,25,7,29)(4,30,8,26)(9,22,13,18)(10,19,14,23)(11,24,15,20)(12,21,16,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,4,31,30,5,8,27,26)(2,25,28,7,6,29,32,3)(9,19,22,14,13,23,18,10)(11,17,24,12,15,21,20,16)>;
G:=Group( (1,16,25,19)(2,24,26,13)(3,10,27,21)(4,18,28,15)(5,12,29,23)(6,20,30,9)(7,14,31,17)(8,22,32,11), (1,31,5,27)(2,28,6,32)(3,25,7,29)(4,30,8,26)(9,22,13,18)(10,19,14,23)(11,24,15,20)(12,21,16,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,4,31,30,5,8,27,26)(2,25,28,7,6,29,32,3)(9,19,22,14,13,23,18,10)(11,17,24,12,15,21,20,16) );
G=PermutationGroup([[(1,16,25,19),(2,24,26,13),(3,10,27,21),(4,18,28,15),(5,12,29,23),(6,20,30,9),(7,14,31,17),(8,22,32,11)], [(1,31,5,27),(2,28,6,32),(3,25,7,29),(4,30,8,26),(9,22,13,18),(10,19,14,23),(11,24,15,20),(12,21,16,17)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,4,31,30,5,8,27,26),(2,25,28,7,6,29,32,3),(9,19,22,14,13,23,18,10),(11,17,24,12,15,21,20,16)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | ··· | 4H | 4I | ··· | 4N | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | D4 | D4 | Q8 | C4○D4 | C4.D4 | M4(2).8C22 |
kernel | C42.96D4 | C22.C42 | C2×C4.D4 | C4⋊M4(2) | C2×C4×D4 | C2×C22⋊C4 | C23×C4 | C42 | C2×D4 | C2×D4 | C2×C4 | C4 | C2 |
# reps | 1 | 2 | 2 | 2 | 1 | 4 | 4 | 4 | 2 | 2 | 4 | 2 | 2 |
Matrix representation of C42.96D4 ►in GL6(𝔽17)
0 | 16 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
G:=sub<GL(6,GF(17))| [0,1,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[13,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,1,0,0,0,0,1,0,0,0],[13,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0] >;
C42.96D4 in GAP, Magma, Sage, TeX
C_4^2._{96}D_4
% in TeX
G:=Group("C4^2.96D4");
// GroupNames label
G:=SmallGroup(128,532);
// by ID
G=gap.SmallGroup(128,532);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,64,422,2804,1027,124]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=b,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1*b^2,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=b^-1*c^3>;
// generators/relations